

Was gibt es Neues aus der Demenzforschung?

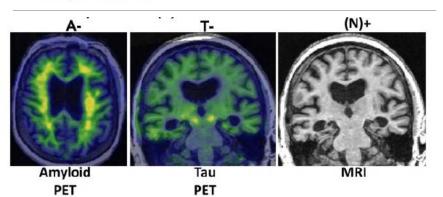
Stefan Teipel

Klinik für Psychosomatik und Psychotherapeutische Medizin , Universitätsmedizin Rostock DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen

THEMEN

- Neue Demenzerkrankung am Horizont?
- Krankheitsmodifizierende Therapien?
- Demenzdiagnose aus dem Blut?
- Was denken die Betroffenen über die Relevanz der Forschung?

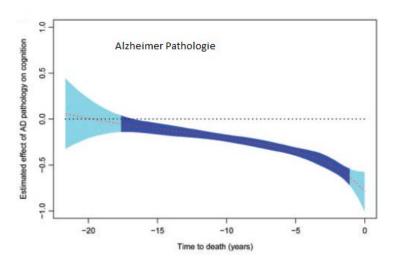
Limbisch-prädominante altersassoziierte TDP-43 Enzephalopathie – LATE-(NC)

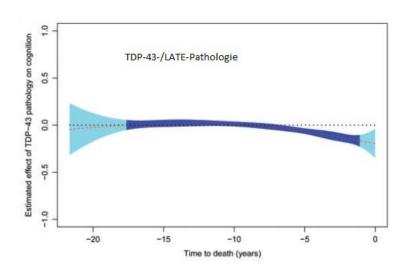

LATE-(NC)-Übersicht

REVIEW

Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report

Peter T. Nelson, ¹ ©Dennis W. Dickson, ² John Q. Trojanowski, ³ Clifford R. Jack Jr., ⁴ Patricia A. Boyle, ⁵ Konstantinos Arfanakis, ^{5,6} Rosa Rademakers, ² Irina Alafuzoff, ⁷ Johannes Attems, ⁸ Carol Brayne, ⁹ Ian T.S. Coyle-Gilchrist, ⁹ Helena C. Chui, ¹⁰ David W. Fardo, ¹ Margaret E. Flanagan, ¹¹ Glenda Halliday, ¹² Suvi R.K. Hokkanen, ⁹ Sally Hunter, ⁹ Gregory A. Jicha, ¹ Yuriko Katsumata, ¹ Claudia H. Kawas, ¹³ C. Dirk Keene, ¹⁴ Gabor G. Kovacs, ¹⁵ Walter A. Kukull, ¹⁴ Allan I. Levey, ¹⁶ Nazanin Makkinejad, ⁶ Thomas J. Montine, ¹⁷ Shigeo Murayama, ¹⁸ Melissa E. Murray, ² Sukriti Nag, ⁵ Robert A. Rissman, ¹⁹ © William W. Seeley, ²⁰ Reisa A. Sperling, ²¹ Charles L. White III, ²² Lei Yu⁵ and Julie A. Schneider ⁵




- Protein TDP-43 bei ALS und FTLD seit
 2006 bekannt (Neumann et al. Science 2006)
- Hippocampales TDP-43 bei kognitiv gesunden Älteren (> 80 Jahre), häufig assoziiert mit Hippocampussklerose/atrophie und Gedächtnisstörung (Josephs et al. Neurology 2008)
- Bis zu 15% der klinischen Alzheimer-Fälle LATE oder AD+LATE?

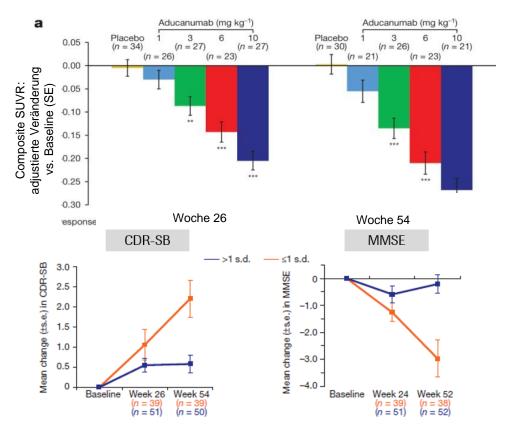
Klinische Charakteristika von LATE

- Amnestisches Syndrom
- Reine LATE-NC hat langsamere Progression der kognitiven Defizite als Alzheimer-Pathologie oder Alzheimer-Pathologie + LATE-NC
- Amyloid-/Tau-PET bzw. Amyloid-/Tau-CSF negativ
- Hippocampussklerose häufig
- Ausgeprägte Hippocampusatrophie

Boyle et al. Brain 2017

Differentialdiagnose

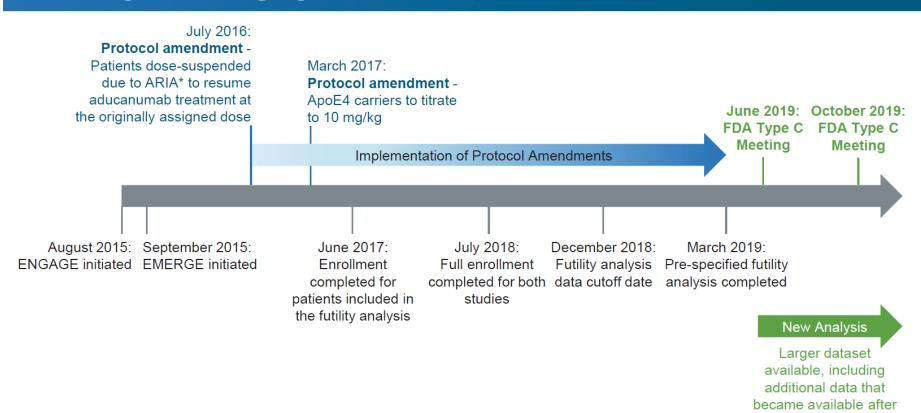
- Alzheimer Demenz
 - o dafür: amnestischer Phänotyp, FDG-PET und MRT mit AD vereinbar
 - o dagegen: CSF/PET-Abeta und CSF-Tau negativ
- bvFTD
 - o dafür: CSF/Amyloid-PET negativ
 - o dagegen: amnestischer Phänotyp, FDG-PET, MRT, Verlauf
- PART
 - o dafür: amnestische Störung, aber zu ausgedehnte Beteiligung weiterer Domänen,
 MRT Befund
 - o dagegen: CSF-Tau negativ
- LATE
 - o dafür: amnestischer Phänotyp, langsame Progredienz, FDG-PET und MRT gut passend, CSF + Amyloid-PET negativ
 - o dagegen: Alter


Update Vakzinierungsstudien gegen Amyloid

Adunamucab: Amyloid-Reduktion bis Woche 26 und 54 in Phase I Studie

CDR-SB = Clinical Demetia Rating – Sum of Boxes; PBO = Placebo; SUVR = Standardized Uptake Value Ratio

- SUVR scores >1 standard deviation unit relative to placebo-treated patients after 1 year of treatment
- SUVR scores ≤ 1 standard deviation unit or no decrease


Aducanumab: Phase-III-Studien gestoppt

Biogen/Eisai halt phase 3 aducanumab trials

March 21, 2019

- Today, Biogen and Eisai announced they would **terminate the phase 3 ENGAGE and EMERGE** trials of aducanumab for early Alzheimer's disease.
- A futility analysis run by an independent data-monitoring committee concluded that the trials would not reach their primary endpoint, the slowing of cognitive decline as measured by the Clinical Dementia Rating-Sum of Boxes (CDR-SB).
- Aducanumab

EMERGE and ENGAGE timeline

* ARIA = amyloid-related imaging abnormality

14

the pre-specified futility analysis

Outline of available datasets

Dataset	Subject Population	EMERGE n (%)	ENGAGE n (%)
Futility	Opportunity to Complete (OTC) ^a	803 (49%)	945 (57%)
Larger Dataset	Opportunity to Complete (OTC) ^b	982 (60%)	1,084 (66%)
	Intent to Treat (ITT) ^c	1,638 (100%)	1,647 (100%)
	Amyloid beta PET sub-study	485 (30%)	582 (35%)

^a Subjects who have had the opportunity to complete week 78 visit by December 26, 2018.

^c All subjects' data (data after March 20, 2019, are censored for efficacy analyses).

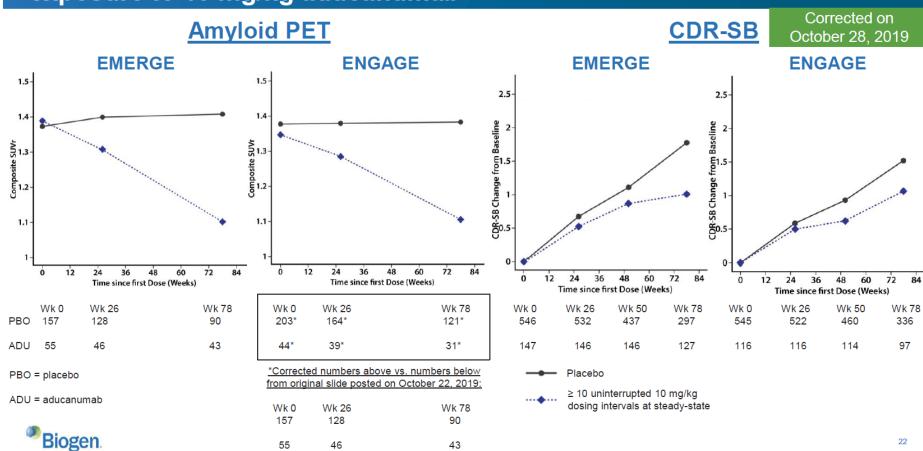
^b Subjects who have had the opportunity to complete week 78 visit by March 20, 2019.

Primary endpoint of EMERGE (larger dataset)

	ITT Population		OTC Population	
	% Reduction vs. Placebo ^a p-value		% Reduction vs. Placebo ^a p-value	
	Low dose (N=543)	High dose (N=547)	Low dose (N=329)	High dose (N=340)
CDR-SB	-14% 0.117	-23% 0.010	-16% 0.134	-23% 0.031

a: difference in change from baseline vs. placebo at Week 78. Negative percentage means less decline in the treated arm.

N: numbers of randomized and dosed subjects that were included in the analysis. Placebo = 548 (ITT) and 313 (OTC).

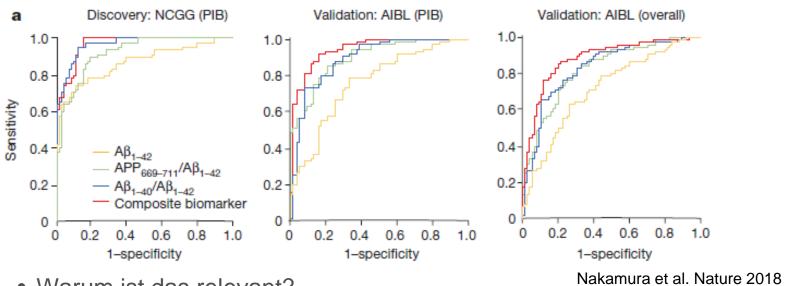

Primary and secondary endpoints from ENGAGE (larger dataset)

	ITT Population		OTC Population	
	% Reduction vs. Placebo ^a p-value		% Reduction vs. Placebo ^a p-value	
	Low dose (N=547)	High dose (N=555)	Low dose (N=370)	High dose (N=345)
CDR-SB	-12% 0.236	2% 0.825	-8% 0.489	6% 0.627
MMSE	-6% 0.488	3% 0.796	-3% 0.741	13% 0.237
ADAS-Cog13	-11% 0.248	-12% 0.245	-1% 0.950	-2% 0.874
ADCS-ADL-MCI	-18% 0.135	-18% 0.152	-12% 0.434	-12% 0.405

a: difference in change from baseline vs. placebo at Week 78. Negative percentage means less decline in the treated arm.
 N: numbers of all randomized and dosed subjects that were included in the analysis. Placebo = 545 (ITT) and 369 (OTC).

ENGAGE consistent with EMERGE in subset of patients with sufficient exposure to 10 mg/kg aducanumab

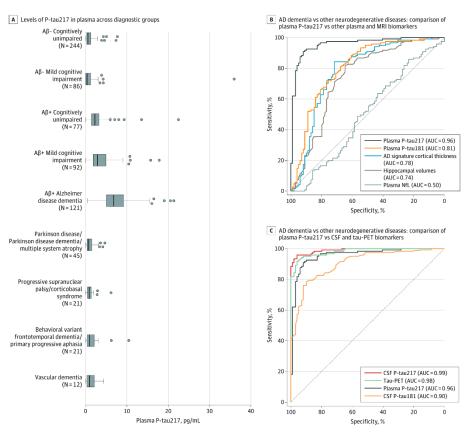
Zusammenfassung Vakzinierungsstudien


- Unterlagen für Zulassung von Aducanumab bei FDA eingereicht
- Aktuell laufende Studien zu:
 - o Gantenerumab, BAN2401, ...

Mechanistischer Effekt der Vakzinierung auf Amyloid und nachgelagerte pathologische Veränderungen (Tau) gezeigt

Relevanz für Kognition trotz erstmalig positivem Signal von Aducanumab immer noch fraglich.

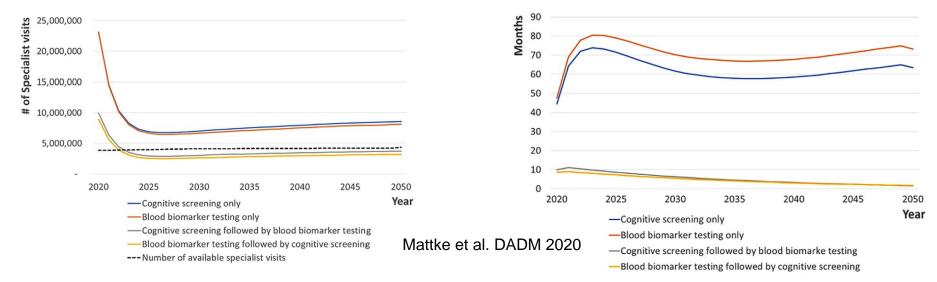
Hinweis auf potentiellen Nutzen von Blutmarkern



Warum ist das relevant?

- o Hohe Genauigkeit der Vorhersage des Amyloid-PET-Ergebnisses als Goldstandard bei Gesunden, MCI, AD-Demenz: Sensitivität/Spezifität > 80%
- o Bestätigung der Ergebnisse in zwei unabhängigen Stichproben (ADNI und AIBL)
- o In nachfolgenden Studien mit ähnlichen Markern wurden vergleichbare Effekte gesehen (z.B. AG Wiltfang, DZNE Göttingen)

P-tau217 im Blut - vielversprechend?



- Warum ist das relevant?
 - Hohe Trennschärfe nicht nur von Gesunden, sondern auch von anderen neurodegenerativen Erkrankungen (Parkinson, FTD, PSP): Sens/Spez. = 89/83%
 - o Hohe Trennschärfe für Amyloid-PET: Sensitivität/Spezifität ca. 80%
 - Einschränkung: AUC-Werte über
 90% weisen möglicherweise auf eine fehlende Kreuzvalidierung, aber dennoch vielversprechende Befunde.

Palmqvist et al. JAMA 2020

Potentieller Effekt von Blutmarkern in der Versorgung

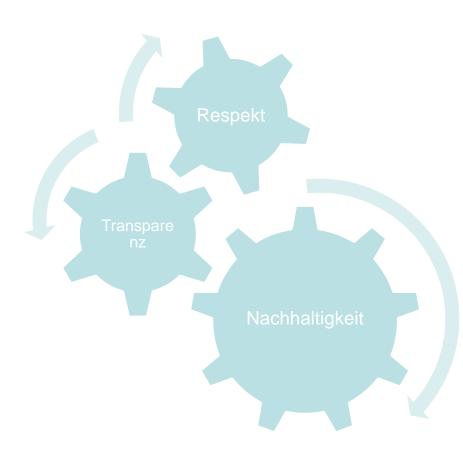
- Warum ist das relevant?
 - Kognitive Kurztestung plus Blutmarker können Verzögerung der Diagnostik und Inanspruchnahme von Fachärzten relevant reduzieren-
 - o Geringere Kosten für Diagnostik pro Fall (ca. 32%) durch höhere Zahl identifizierter Fälle und geringe Reduktion der Gesamtkosten für Diagnostik (ca. 5%).
 - o Einsatz von Blutmarkern allein für anlassbezogenes Screening nicht ausreichend.

Blutmarker

- Können Blutmarker eine ausführliche Diagnostik ersetzen?
 - o Antwort: Nein, dazu sind die Befunde zu unspezifisch.
- Können Blutmarker zum Screening eingesetzt werden?
 - o Antwort: Im Prinzip ja, allerdings sollte kein anlassloses Screening erfolgen.
- Wie könnten zukünftig Blutmarker eingesetzt werden?
 - o Antwort: Zusammen mit einfachen kognitiven Screeningtests. Wenn Blutmarker und kognitiver Test auffällig sind, sollte eine ausführliche Abklärung erfolgen.
- Was ist dann der potentielle Nutzen von Blutmarkern?
 - o Antwort: Die Auswahl der Patienten, für die eine ausführliche Diagnostik sinnvoll ist, und zugleich das Vermeiden unnötiger Diagnostik?
- Gibt es solche Blutmarker heute bereits in der Regelversorgung?
 - o Antwort: Nein, aber es ist davon auszugehen, dass innerhalb der nächsten 5 Jahre Blutmarker für die Regelversorgung verfügbar sein werden.

Partizipative Forschung

- Partizipative Forschung mit oder durch Betroffene anstatt für oder über sie
- Partizipation in der Demenzforschung in Deutschland bislang wenig etabliert
- Verbesserung der Partizipation als Ziel der Nationalen Demenzstrategie


Selbstorganisation	über Partizipation hinaus	
Entscheidungsmacht Teilweise Entscheidungskompetenz	Partizipation	
Mitbestimmung Einbeziehung		
Anhörung	Vorstufen der Partizipation	
Information		
ımentalisierung	Nicht-Partizipation	

Quelle: Wright et al., 2007

Wie soll die Zusammenarbeit mit den Forschern gestaltet sein?

- Berücksichtigung von überschaubaren Laufzeiten der Forschungsvorhaben
- Sensibler und wertschätzender Umgang auf Augenhöhe
- Schulungen für Forscher zum Umgang mit verschiedenen Zielgruppen
- Berücksichtigung von politischen Rahmenbedingungen
- Überleitung von Forschungsergebnissen in die Regelversorgung

Welche Chancen und Risiken bietet partizipative Demenzforschung?

Chancen:

- Zusammenarbeit mit allen Akteuren, die am Versorgungsprozess beteiligt sind
- Übertragung wissenschaftlicher Ergebnisse in die Versorgungspraxis
- Aufklärung der Öffentlichkeit und Entstigmatisierung des Krankheitsbildes

Risiken:

- Manipulatives Vorgehen der Wissenschaftler
- Wildwuchs von Angeboten und nicht sinnvollen Geschäftsmodellen
- Alibiforschung